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The free energy of a thermodynamic system is known to be a concave 
function of the temperature. This fact is used, together with some results 
due to Fisher, to deduce bounds on the internal energy of the two-dimen- 
sional Ising model, given reasonably accurate upper and lower bounds 
on the free energy. These free energy bounds are derived from renormaliza- 
tion group transformations. Unfortunately, the numerical accuracy of the 
bounds on the internal energy is poor. The reasons for the failure are 
discussed. 

KEY W O R D S  : Renormalization group; variational principles; convexity; 
bounds on free energy and internal energy; Ising model. 

1.  i N T R O D U C T I O N  

Var ia t iona l  pr inciples  in stat is t ical  mechanics  have been k n o w n  for  a long 
t ime (for a recent  review see G i r a r d e a u  and  Mazo  (1)). Recently,  new methods ,  
based  on renormal i za t ion  g roup  t rans format ions ,  have been developed.  (2-4) 
These methods  yield definite bounds  on the free energy. 

F o r  the mos t  par t ,  however ,  these bounds  have been used to jus t i fy  a 
" b e s t "  set o f  recurs ion re la t ions  f rom which cri t ical  exponents  can  be 
es t imated  by  s t anda rd  renormal iza t ion  g roup  techniques (see Refs. 5 for  
reviews). Since the cri t ical  exponents  character ize  the behav ior  o f  var ious  
derivatives of  the free energy, there  are  no reasons to believe tha t  such 
app rox ima te  es t imates  should  bea r  any  pa r t i cu la r  re la t ionship  to  the exact  
values.  

In  addi t ion ,  recent  work  (6-8~ has es tabl ished that  fully op t imized  var ia-  
t iona l  app rox ima t ions  to renormal iza t ion  groups  suffer f rom m a j o r  weak-  
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nesses and problems. In particular, van Saarsloo et al. (6) argued that the 
optimal variational parameters can become nonanalytic at a fixed point, 
leading to nonanalytic recursion relations, which are against the funda- 
mental spirit of  the renormalization group. These singularities have been 
exhibited (8) explicitly for the Kadanoff approximation (2) to the square lattice 
Ising model. 

These developments have to a large extent dashed the original hopes 
held for variational approximations to renormalization groups. Nevertheless, 
such methods do appear capable of generating fairly accurate bounds- -  
both lower and upper-- to  the free energy. It is of interest to inquire whether 
anything rigorous and, one hopes, useful can be deduced from these bounds 
concerning the behavior of  the derivatives of  the exact free energy. 

Since the free energy of a system is known (9) quite generally to be a 
concave function of physical variables, such as the temperature or the 
magnetic field, one might hope to bound some of  its derivatives using the 
method of  Fisher31~ The aim of this paper is to test this possibility. Our 
argument is arranged as follows. In the next section, we summarize the 
relevant results of Fisher. (1~ These are applied in Section 3 to deduce bounds 
for the internal energy of the Ising model on the square lattice from re- 
normalization group upper ~4) and lower (3) bounds to its free energy. A con- 
cluding discussion is given in Section 4. Unfortunately, the nature of the 
bounding functions results in rather disappointing results. 

2. B O U N D S  FOR THE D E R I V A T I V E  OF A C O N V E X  F U N C T I O N  

A continuous funct ionf(x)  is concave (9~ on an interval [a, b] if 

f [ a x l  + (1 - a)Xo] /> ,',f(xl) + (1 - ~,)f(xo) (2.1) 

for all xo, x l  e [a, b] and all h e [0, 1]. For  h r 0, this can be rewritten as 

{f[xo + h(xl - Xo)] - f ( x o ) } l a  >1 f ( x l )  - f ( x o )  (2.2) 

Taking the limit h --> 0 with Xo and xl fixed yields 

( d f )  >> f (x~)  - f ( xo)  (2.3) 
f ' ( xo )  - -~x x=~ o xl -- Xo 

If  we are now given bounding functions f v ( x )  and fL(X) for f ( x )  such 

that 

A ( x )  <. f ( x )  <. f~,(x) (2.4) 

then (2.3) immediately implies that 

f ' ( xo )  >1 mL(Xo; xl) = [fz(xa) - fu (xo) l [ (x l  - xo) (2.5) 
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for all x~ > Xo. The bound can be optimized by varying x~ with Xo fixed. 
Fisher ~lm extended this analysis and showed that 

f ' (xo)  <<. rnv(xo ;x2) = [fv(xo) -fz(x2)l /(xo - x2) (2.6) 

for all x2 < Xo. Again varying x2 with Xo fixed allows the bound to be 
optimized. 

Both (2.5) and (2.6) are valid for any bounds fL and f u - - n o  additional 
assumptions on these functions are necessary. IffL(x) is continuous and at 
least once differentiable, then it is straightforward to show that the optimum 
bounds occur when x, and x2 satisfy the equations 

fr/(X2) = m(xo ; x2), fL'(xl) = mL(xo; xl)  (2.7) 

provided x2 < Xo and x~ > Xo. 

3. B O U N D S  FOR THE INTERNAL ENERGY OF THE 
T W O - D I M E N S I O N A L  ISING M O D E L  

As a test of the possible significance of  Fisher's results when combined 
with renormalization group bounds for the free energy, we shall now con- 
sider the two-dimensional/sing model on the square lattice. The upper bound 
is that constructed by Barber. (4) Explicitly, if K =/3J, fr,.(K) is defined by 

frj(K) = ~ 4-'-~g(Kz) (3.1) 
I = 0  

where 

and 

with 

g(K) = - l n (6  + 2 cosh 4K) (3.2) 

Kz+~ = 2K~h(e-4K'), Ko = K (3.3) 

h(x) = (I + 2x)/(1 + 6x + x 2) (3.4) 

This function is plotted in Fig. 1 for 0 < K <~ 1.6. The lower bound is sup- 
plied by the Kadanoff one-hypercube approximation r and optimized by 
the algorithm OPTVAR, r which makes use of  control theory methods. r 
This function is also exhibited in Fig. 1, where both bounds are compared 
with the exact free energy3 lm For  convenience a factor of  k~T is absorbed 
into the definition o f f  to make it dimensionless. It is significant that both 
bounds become exact for both weak and strong coupling. This seems to be 
quite a common feature of bounds derived from renormalization group 
approximations. 
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Fig. 1. The upper fu(K) and lower fL(K) bounds to the exact free energy f(K) (broken 
curve) of the two-dimensional Ising model on the square lattice used in this paper. 
The crosses mark the nonanalytic points of each function. 

We also note that both bounds are nonanalytic; the singular points are (4,8) 
K = Kc, tr -~ 0.5187 for ftr(K) and K = Kc,L ---- 0.4785 for fz(K). The second 
derivative offtz(K) actually diverges at K~, tr as 

f " (K)  ,,, I K -  Ko,~,I-"~' (3.5) 

with a v ~ 0.012. The second derivatives offL(K) is, however, cusped, varying 
as 

fz"(K) ~ fz"(K~,L) + A I K -  K~,zl-% + "" (3.6) 

with c~r~- -0 .19 .  The negative exponent az is to be expected in a fully 
optimized bound of  the Kadanoff  type and is one of the weaknesses of  such 
approximations. (6) 

Since the evaluation offL(K) is reasonably difficult even given the effi- 
ciency of OPTVARJ  8~ we did not attempt to optimize the derivative bounds 
rnz and mu continuously. Rather, fL(K) was evaluated using OPTVAR at 
32 select points ranging f rom K = 0 to K = 2 and clustered more densely 
near K = Kc,z "~ 0.48. Above K = 2, as is apparent f rom Fig. 2, fz(K) is 
numerically indistinguishable f rom the exact free energy, which in this 
regime is well-approximated by 

f ( K )  ~- - 2K + O(e-'~:) (3.7) 

The bounds (2.5) and (2.6) were then optimized over these points. The 
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Fig. 2. Plot of the upper  mu and lower mL bounds on the internal energy derived from 
Fisher 's  results (see text). For  comparison the exact internal energy f ' ( K )  and the 
derivatives fu ' (K)  (broken curve) and fL" (chain curve) of the free energy bounds are 
also shown. 

resulting optimum bounds are plotted in Fig. 2. For comparison, we also 
show the exact internal energy and the derivatives offL(K) andfv(K).  Some- 
what surprisingly, fv'(K) is not strictly monotonic, implying that frz(K) is 
not a concave function. We do not know whether this is true of other re- 
normalization group approximations. 

4. DISCUSSION 

Unfortunately, as is evident from Fig. 2, the Fisher bounds (2.5) and 
(2.6) are not very good. Indeed, the derivatives fL' andfu '  of the free energy 
bounds provide better numerical approximations to the exact internal energy. 
This is especially so in the critical region where f'(K) varies most rapidly. 
The reason for this failure is not difficult to locate: fL(K) is monotone de- 
creasing and thus for Ko ~> 0.4, the value of Kz for which mL(Ko, K2) is 
optimum is pushed out to infinity. This results in little sensitivity. 
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Better bounds could undoubtedly be obtained, given better bounds for 
the free energy. Some improvement could be achieved fairly readily. For 
example, f u ( K ) ,  which, as noted earlier, is not concave, could be replaced 
by its concave envelope. Similarly, the fact that for(K) = - 2 K  + O(1) as 
K ~ oo could be incorporated. However, such modifications are unlikely to 
significantly improve the accuracy, particularly in the critical region. It is, 
however, dubious whether one could actually construct sufficiently worth- 
while bounds to apply the Fisher results without also actually deriving 
rather accurate approximations to i f ( K )  and i f ( K ) .  This would almost cer- 
tainly be the case if renormalization group methods are used. Any improve- 
ment must involve an improvement in the recursion relations in the vicinity 
of  the fixed point and hence improved estimates of the exponents. 
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